hyperreal number - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

hyperreal number - Übersetzung nach russisch

ELEMENT OF A NONSTANDARD MODEL OF THE REALS, WHICH CAN BE INFINITE OR INFINITESIMAL
HyperReal numbers; Nonstandard real numbers; Nonstandard real number; Hyperreals; Hyperreal field; Hyperreal fields; R*; *R; Hyper real number; Hyper real numbers; Hyperreal numbers; Non-standard real numbers; Non-standard real number; Ultrapower construction; Hypperreal number line; Hyperreal number line; Hyperreal line
  • Infinitesimals (ε) and infinities (ω) on the hyperreal number line (1/ε = ω/1)

hyperreal number         

математика

гипервещественное число

hyperreal field         

математика

гипервещественное поле

atomic number         
  • An explanation of the superscripts and subscripts seen in atomic number notation. Atomic number is the number of protons, and therefore also the total positive charge, in the atomic nucleus.
  • Russian chemist [[Dmitri Mendeleev]], creator of the periodic table.
  • [[Henry Moseley]] in his lab.
  • [[Niels Bohr]], creator of the [[Bohr model]].
NUMBER OF PROTONS FOUND IN THE NUCLEUS OF AN ATOM
Atom number; Atomic numbers; Atomic Number; Proton number; Z (Atomic number); Z (atomic number); Number of protons; Nuclear charge number
атомный /порядковый/ номер (в таблице Менделеева)

Definition

ВЕЩЕСТВЕННОЕ ЧИСЛО
то же, что действительное число.

Wikipedia

Hyperreal number

In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form

1 + 1 + + 1 {\displaystyle 1+1+\cdots +1} (for any finite number of terms).

Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyper-real" was introduced by Edwin Hewitt in 1948.

The hyperreal numbers satisfy the transfer principle, a rigorous version of Leibniz's heuristic law of continuity. The transfer principle states that true first-order statements about R are also valid in *R. For example, the commutative law of addition, x + y = y + x, holds for the hyperreals just as it does for the reals; since R is a real closed field, so is *R. Since sin ( π n ) = 0 {\displaystyle \sin({\pi n})=0} for all integers n, one also has sin ( π H ) = 0 {\displaystyle \sin({\pi H})=0} for all hyperintegers H {\displaystyle H} . The transfer principle for ultrapowers is a consequence of Łoś' theorem of 1955.

Concerns about the soundness of arguments involving infinitesimals date back to ancient Greek mathematics, with Archimedes replacing such proofs with ones using other techniques such as the method of exhaustion. In the 1960s, Abraham Robinson proved that the hyperreals were logically consistent if and only if the reals were. This put to rest the fear that any proof involving infinitesimals might be unsound, provided that they were manipulated according to the logical rules that Robinson delineated.

The application of hyperreal numbers and in particular the transfer principle to problems of analysis is called nonstandard analysis. One immediate application is the definition of the basic concepts of analysis such as the derivative and integral in a direct fashion, without passing via logical complications of multiple quantifiers. Thus, the derivative of f(x) becomes f ( x ) = st ( f ( x + Δ x ) f ( x ) Δ x ) {\displaystyle f'(x)=\operatorname {st} \left({\frac {f(x+\Delta x)-f(x)}{\Delta x}}\right)} for an infinitesimal Δ x {\displaystyle \Delta x} , where st(·) denotes the standard part function, which "rounds off" each finite hyperreal to the nearest real. Similarly, the integral is defined as the standard part of a suitable infinite sum.

Übersetzung von &#39hyperreal number&#39 in Russisch